像素

网络模型

为了使得多种设备能通过网络相互通信,和为了解决各种不同设备在网络互联中的兼容性问题,国际标准化组织制定了开放式系统互联通信参考模型( _Open System Interconnection Reference Model _),也就是 OSI 网络模型,该模型主要有 7 层

  • 应用层,负责给应用程序提供统一的接口;
  • 表示层,负责把数据转换成兼容另一个系统能识别的格式;
  • 会话层,负责建立、管理和终止表示层实体之间的通信会话;
  • 传输层,负责端到端的数据传输;
  • 网络层,负责数据的路由、转发、分片;
  • 数据链路层,负责数据的封帧和差错检测,以及 MAC 寻址;
  • 物理层,负责在物理网络中传输数据帧;

由于 OSI 模型实在太复杂,提出的也只是概念理论上的分层,并没有提供具体的实现方案。

事实上,比较常见,也比较实用的是四层模型,即 TCP/IP 网络模型,Linux 系统正是按照这套网络模型来实现网络协议栈的。

TCP/IP 网络模型共有 4 层,分别是应用层、传输层、网络层和网络接口层,每一层负责的职能如下:

  • 应用层,负责向用户提供一组应用程序,比如 HTTP、DNS、FTP 等;
  • 传输层,负责端到端的通信,比如 TCP、UDP 等;
  • 网络层,负责网络包的封装、分片、路由、转发,比如 IP、ICMP 等;
  • 网络接口层,负责网络包在物理网络中的传输,比如网络包的封帧、 MAC 寻址、差错检测,以及通过网卡传输网络帧等;

TCP/IP 网络模型相比 OSI 网络模型简化了不少: tcp.png

应用层

最上层的,我们能直接接触到的就是应用层(_Application Layer_),电脑或手机使用的应用软件都是在应用层实现。当两个不同设备的应用需要通信的时候,应用就把应用数据传给下一层,也就是传输层。

所以,应用层只需要专注于为用户提供应用功能,比如 HTTP、FTP、Telnet、DNS、SMTP等。

不用去关心数据是如何传输的,就类似于,我们寄快递的时候,只需要把包裹交给快递员,由他负责运输快递,不需要关心快递是如何被运输的。

而且应用层是工作在操作系统中的用户态,传输层及以下则工作在内核态。

传输层

传输层(_Transport Layer_)是为应用层提供网络支持的。 在传输层会有两个传输协议,分别是 TCP 和 UDP。

  • TCP 的全称叫传输控制协议(_Transmission Control Protocol_),大部分应用使用的正是 TCP 传输层协议,比如 HTTP 应用层协议。TCP 相比 UDP 多了很多特性,如流量控制、超时重传、拥塞控制等,这些都是为了保证数据包能可靠地传输给对方。
  • UDP 相对来说就很简单,简单到只负责发送数据包,不保证数据包是否能抵达对方,但它实时性相对更好,传输效率也高。当然,UDP 也可以实现可靠传输,把 TCP 的特性在应用层上实现就可以,不过要实现一个商用的可靠 UDP 传输协议,也不是一件简单的事情。

应用需要传输的数据可能会非常大,当传输层的数据包大小超过 MSS(TCP 最大报文段长度) ,就要将数据包分块,这样即使中途有一个分块丢失或损坏了,只需要重新发送这一个分块,而不用重新发送整个数据包。在 TCP 协议中,我们把每个分块称为一个 TCP 段(_TCP Segment_)。

当设备作为接收方时,传输层则要负责把数据包传给应用,但是一台设备上可能会有很多应用在接收或者传输数据,因此需要用一个编号将应用区分开来,这个编号就是端口

由于传输层的报文中会携带端口号,因此接收方可以识别出该报文是发送给哪个应用。

网络层

传输层的设计理念是简单、高效、专注。只需要服务好应用就好,作为应用间数据传输的媒介,而实际的传输功能就交给下一层,也就是网络层(_Internet Layer_)。

网络层最常使用的是 IP 协议(_Internet Protocol_),IP 协议会将传输层的报文作为数据部分,再加上 IP 包头组装成 IP 报文,如果 IP 报文大小超过 MTU(以太网中一般为 1500 字节)就会再次进行分片,得到一个即将发送到网络的 IP 报文。

ip.webp 一般用 IP 地址给设备进行编号,对于 IPv4 协议, IP 地址共 32 位,分成了四段(比如,192.168.100.1),每段是 8 位。只有一个单纯的 IP 地址虽然做到了区分设备,但是寻址起来就特别麻烦。

因此,需要将 IP 地址分成两种意义:

  • 一个是网络号,负责标识该 IP 地址是属于哪个「子网」的;
  • 一个是主机号,负责标识同一「子网」下的不同主机;

比如 10.100.122.0/24,后面的/24表示就是 255.255.255.0 子网掩码,255.255.255.0 二进制是「11111111-11111111-11111111-00000000」,是 24 个1,为了简化子网掩码的表示,用/24代替255.255.255.0。

将 10.100.122.2 和 255.255.255.0 进行按位与运算,就可以得到网络号:

10.100.122.0

将255.255.255.0 取反后与IP地址进行进行按位与运算,就可以得到主机号

除了寻址能力, IP 协议还有另一个重要的能力就是路由。实际场景中,两台设备并不是用一条网线连接起来的,而是通过很多网关、路由器、交换机等众多网络设备连接起来的,那么就会形成很多条网络的路径,因此当数据包到达一个网络节点,就需要通过路由算法决定下一步走哪条路径。

路由器寻址工作中,就是要找到目标地址的子网,找到后进而把数据包转发给对应的网络内。

所以,IP 协议的寻址作用是告诉我们去往下一个目的地该朝哪个方向走,路由则是根据「下一个目的地」选择路径。寻址更像在导航,路由更像在操作方向盘

网络接口层

生成了 IP 头部之后,接下来要交给 网络接口层(_Link Layer_)在 IP 头部的前面加上 MAC 头部,并封装成数据帧(Data frame 发送到网络上。

IP 头部中的接收方 IP 地址表示网络包的目的地,通过这个地址就可以判断要将包发到哪里,但在以太网的世界中,这个思路是行不通的。

什么是以太网呢?

电脑上的以太网接口,Wi-Fi接口,以太网交换机、路由器上的千兆,万兆以太网口,还有网线,它们都是以太网的组成部分。以太网就是一种在「局域网」内,把附近的设备连接起来,使它们之间可以进行通讯的技术。

以太网在判断网络包目的地时和 IP 的方式不同,因此必须采用相匹配的方式才能在以太网中将包发往目的地,而 MAC 头部就是干这个用的,所以,在以太网进行通讯要用到 MAC 地址。

MAC 头部是以太网使用的头部,它包含了接收方和发送方的 MAC 地址等信息,我们可以通过 ARP 协议获取对方的 MAC 地址。

所以说,网络接口层主要为网络层提供「链路级别」传输的服务,负责在以太网、WiFi 这样的底层网络上发送原始数据包,工作在网卡这个层次,使用 MAC 地址来标识网络上的设备。

总结:

tcpip.pnghttptcpip.png